Civil Engineering

Yves Filion

Publications | Research Interests | Awards

Yves Filion

Yves Filion, PhD, PEng
Associate Professor
Room 211, Ellis Hall
Queen's University
Kingston, Ontario, Canada
K7L 3N6
Tel: (613) 533-2126
Fax: (613) 533-2128
E-mail: yves.filion@queensu.ca

Personal Profile

I am an associate professor in the Department of Civil Engineering at Queen's University. I am also an Associate Editor with the ASCE Journal of Water Resources Planning & Management, and a licensed professional engineer (P.Eng.) with 15 years' research and consulting experience in municipal and environmental engineering. In that time, I have been developing decision support tools and technologies to support the water and municipal engineering community in making cost-effective decisions to design and rehabilitate water distribution systems. My expertise in water distribution systems analysis and optimization and my expertise in hydraulics has been sought by PEO, scientific advisory committees for international conferences in water distribution network modelling, and the Natural Science and Engineering Research Council (NSERC) to review scientific proposal.

I have also had the opportunity to work in the consulting industry. Before undertaking a Ph.D., I spent some time in the employ of the consulting firm R.V. Anderson Associates Limited in Toronto, Ontario, Canada. My consulting experience is wide-ranging and includes the design of drinking water, storm water, and wastewater systems, as well as infrastructure-renewal planning. I am currently a licensed Professional Engineer (P.Eng.) in the province of Ontario.

Selected Appointments

  • Associate Editor, ASCE Journal of Water Resource Planning and Management (2011-present)
  • International Scientific Advisory Committee Member, CCWI (2009, 2011, 2013, 2015)
  • International Scientific Advisory Committee Member, WDSA (2008, 2010, 2014)
  • Status Appointment (Assistant Professor), University of Toronto, Toronto, ON.


Doctor of Philosophy (Ph.D.) - Civil Engineering

University of Toronto, Canada, 2006

Master of Applied Science (M.A.Sc.) - Civil Engineering

University of Toronto, Canada, 2001

Bachelor of Applied Science (B.A.Sc.) - Civil Engineering

University of Toronto, Canada, 1997

Research Interests

As a leading researcher in sustainable water systems, Dr. Filion is developing innovative solutions to the high energy costs and water quality problems associated with aging municipal water systems. As water systems age, they require more energy to operate. Dr. Filion is exploring ways to reduce the energy and environmental footprint of water systems. His research is intended to help municipalities deliver safe drinking water to Canadians more cost effectively and with less energy; to achieve this, he has been developing whole-of-life design approaches to optimize the rehabilitation of water main assets that will reduce energy use and the greenhouse gas emissions linked to water provision. Dr. Filion is also developing a novel energy analysis to help municipalities better understand how reducing leakage, conserving water, and rehabilitating old pipes can save energy in water systems. Dr. Filion has recently been recognized by his peers for his leading contributions to the field of sustainable water systems with a keynote lecture at the 2014 International Water Distribution System Analysis Conference. Additionally, Dr. Filion’s pioneering work in life-cycle energy analysis of water systems has also been recognized with “best paper” awards from the Journal of American Water Works Association.

Dr. Filion is also working to improve drinking water quality in water distribution systems. His research in this area focuses on studying biofilm growth and mobilization–two mechanisms that can lead to drinking water quality problems in municipal systems. Dr. Filion was recently awarded funding from the federal and provincial governments to establish a large-scale pipe research facility that will allow him to examine the influence of fluid flow and water quality conditions on biofilm growth and mobilization in pipes. Ultimately, Dr. Filion’s research goal is to help evaluate the effectiveness of new pipe liner technologies and other strategies in improving water quality in municipal water distribution systems. 


Area 1: Climate Change Mitigation of Drinking Water Systems

Building, operating, and decommissioning drinking water systems has a large impact on the environment in relation to energy use and greenhouse gas (GHG) emissions. With plans for future carbon tax and cap-and-trade agreements in Canada and the US, water utilities will be expected to track and reduce their carbon emissions. This first research area is focused on developing planning, design, and optimization methods to help water utilities reduce GHG and air emissions, non-renewable energy use, and environmental releases in their drinking water systems.

Area 2: Climate Change Adaptation of Drinking Water Systems

Anticipated changes to our climate (IPCC 2007) are expected to create important changes in the water industry ranging from a possible increase in water demand to important changes to source water quality. A big challenge that municipal water utilities face is to plan the upgrade and rehabilitation of their water systems with limited information on future water demand, on future source water quality, and on the future condition of buried water main infrastructure. This second research area is focused on developing methods to design and optimize drinking water systems so that they are more resilient and adaptable to anticipated changes in climate to avoid unplanned and expensive retrofits in the future.

Area 3: Discolouration in Drinking Water Systems

Ageing water pipes cause water quality problems ranging from bad odours to 'red water' discolouration events that undermine public confidence in Canada's drinking water infrastructure. The deterioration of grey cast iron and unlined ductile iron mains can contribute iron corrosion products to bulk water and solids and colloidal particles (e.g., manganese "slimes") can accumulate on pipe walls. Discolouration is caused by the long-term accumulation of particles on pipe walls and subsequent mobilization of these particles triggered by sudden increases in flow and shearing forces. The short and medium term objectives of the research are to: (i) examine the fundamental processes of particle accumulation and mobilization in buried water mains assets found in Canadian networks; (ii) examine the effect of fluid velocity and conditioning shear stress on material accumulation and biofilm formation, (iii) examine the effect of flushing velocity & scouring shear stresses on material mobilization; (iv) establish how deteriorated pipes and repaired pipes influence water quality. In the long term, guidance will result for water pipe operation, maintenance and replacement.

Drinking Water Discolouration Research at Queen’s

 Laboratory-Based Research

Drinking water treatment and distribution networks are critical infrastructure systems that ensure the safety of drinking water for Canadians. The accumulation of material on pipe walls and its re-suspension into the water following hydraulic disturbances is a common cause of poor drinking water quality in a distribution system.

 With the help of federal and provincial government funding, Dr. Filion at Queen’s University has developed a large-scale laboratory pipe facility that will advance research in drinking water quality and discolouration (also known as red water problems) in distribution systems. The state-of-the-art facility will examine the sources and mechanisms of drinking water discolouration and develop new technologies to mitigate discolouration events in distribution systems.

 Large Scale Laboratory pipe facilty

The facility will help address key research questions like:

  • What are the causes of discolouration in Canadian distribution systems?
  • What kind of material accumulates on the pipe wall and what mechanisms are responsible for the accumulation of material on the pipe wall?
  • What hydraulic disturbances can mobilize wall material into the water in the pipe?
  • How quickly does material accumulate on the wall of different pipe materials?
  • How does temperature influence the growth rate of material on the pipe wall?
  • How effective is chlorine and other methods of water disinfection at slowing the accumulation of material on the pipe wall?
  • How effective are pipe liner systems in slowing the rate of the accumulation of material on the pipe wall?

 The facility comprises two large-scale pressurized pipe test rigs inside an environmental chamber. Each pressurized pipe rig is comprised of looped 100 mm diameter PVC pipe. Variable-speed pumps are used to simulate a wide range of conditioning and flushing flows. Each pipe rig is equipped with instrumentation to measure turbidity, chlorine residuals, specific conductivity, temperature and other water quality parameters. The rig also includes removable coupons to examine the microbiologically active material that may be attached to the pipe wall. The environmental chamber is designed to vary the water temperature between 4C to 20C to examine microbiologically-active material that can accumulate on the pipe wall under different environmental conditions.

 environmental chamber

Field-Based Research

The field-based research program at Queen’s is focused on helping Ontario and Canadian municipalities address drinking water quality and discolouration issues. The field-based program involves activities such as unidirectional flushing of water mains and the collection of measurements on turbidity, chlorine residuals and other parameters to advance knowledge on the root causes of discolouration in Canadian distribution systems.

 The drinking water discolouration research program is focused on establishing collaborations between Queen’s and Canadian municipalities to produce new knowledge about operational strategies and new technologies to improve water quality and minimize the risk of discolouration in distribution systems. The field and laboratory research programs will provide a unique environment to train graduate students and postdoc researchers to become drinking water quality experts.


Area 1: Sustainable Water Re-Use for Non-Potable Applications at Residential and Community Scales

This research area is focused on investigating the feasibility of capturing and treating storm water (at the residential or watershed scale, or both) for re-use in non-potable applications such as lawn irrigation, and other outdoor municipal water uses. The feasibility of integrating storm water collection with non-potable water distribution will be examined with respect to capital costs, operational costs, source water and community protection performance (e.g., reduction in combined sewer overflows), improvements in water quality, sustainability of the urban water balance, and hydraulic and hydrologic robustness and resilience.

Area 2: Adaptation Planning of Storm Water Systems for Extreme Weather Events

Climate change impacts in Ontario have the potential to produce extreme storm events with higher rainfall intensities and larger rainfall volumes. The changes in extreme events are of particular importance to the design, operation and maintenance of municipal water management infrastructure. There is a need to understand how higher-intensity storm events will affect the performance of existing storm water infrastructure in Canadian cities. The ongoing research is directed to: (i) developing rainfall forecasting models that account for a possible climate change in the coming decades; (ii) developing distributed hydrologic/hydraulic SWMM models to evaluate the performance of urban drainage systems under status quo (no climate change) and climate change scenarios; (iii) using the information generated with SWMM models to help Canadian municipalities make changes to design standards of storm water infrastructure and to plan and implement flood protection infrastructure to protect urban areas from flooding.

If you are thinking of pursuing graduate studies in one of the areas outlined above, I would be pleased to hear from you.